1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Характеристики срастания костной ткани

Регенерация костной ткани в норме и патологии

130.Пути регенерации костной ткани. Физиологическая и репаративная регенерация. Стадии образования костной мозоли и ее виды. Первичное и вторичное сращение костной раны. Нарушение репаративной регенерации костной раны – замедленная консолидация и ложный сустав. Причины. Методы лечения.

Срастание отломков после перелома сопровождается образованием новой ткани, в результате которого появляется костная мозоль. Сроки заживления переломов колеблются от нескольких недель до нескольких месяцев, в зависимости от возраста (у детей переломы срастаются быстрее), общего состояния организма и местных причин — взаимного расположения отломков, вида перелома и т. д.

Восстановление костной ткани происходит за счёт деления клеток камбиального слоя надкостницы, эндоста, малодифференцированных клеток костного мозга и мезенхимальных клеток (адвентиции сосудов).

В процессе регенерации можно выделить 4 основные стадии:

Аутолиз — в ответ на развитие травмы развивается отёк, происходит активная миграция лейкоцитов, аутолиз погибших тканей. Достигает максимума к 3—4 дню после перелома, затем постепенно стихает.

Пролиферация и дифференцировка — активное размножение клеток костной ткани и активная выработка минеральной части кости. При неблагоприятных условиях сначала формируется хрящевая ткань, которая затем минерализуется и заменяется костной.

Перестройка костной ткани — восстанавливается кровоснабжение кости, из костных балок формируется компактное вещество кости.

Полное восстановление — восстановление костномозгового канала, ориентация костных балок в соответствии силовыми линиями нагрузки, формирование надкостницы, восстановление функциональных возможностей повреждённого участка.

На месте перелома формируется костная мозоль.

Выделяют 4 вида костной мозоли:

Периостальную — формируется небольшое утолщение вдоль лини перелома.

Эндоостальную — костная мозоль расположена внутри кости, возможно небольшое уменьшение толщины кости в месте перелома.

Интермедиальную — костная мозоль расположена между костными отломками, профиль кости не изменён.

Параоссальную — окружает кость достаточно крупным выступом, может искажать форму и структуру кости.

Непосредственно после травмы между отломками костей и поврежденными мягкими тканями происходит кровоизлияние, которое распространяется на значительное пространство.

Как реакция на травму, в области перелома развивается асептическое воспаление, экссудация, эмиграция лейкоцитов, что влечет за собой отек тканей вследствие серозного пропитывания их. Отек может быть выражен так сильно, что происходит отслойка эпидермиса в области поврежденного участка и образование пузырей с серозным или серозно-кровянистым экссудатом. В дальнейшем, приблизительно к 10—15-му дню, отек постепенно уменьшается, кровоподтеки исчезают; на месте перелома образуется новая, спаивающая отломки костная ткань. Процесс регенерации костей после перелома всегда происходит путем развития костной мозоли, которая и является патолого-анатомическим субстратом при регенерации кости после перелома.

Костная мозоль состоит из юной мезенхимальной ткани, развивающейся на месте дефекта, и гематомы между отломками, а также в окружности их. С постепенным развитием сосудов начинают формироваться костные пластинки. Они, как и вся мозоль в целом, неоднократно видоизменяются. Процесс регенерации костной ткани в сущности является одним из видов воспалительного процесса. При травме на месте перелома изливается кровь, остаются обрывки размозженных мягких тканей, костного мозга, разорванной надкостницы, сосудов и т. д., пропитанных кровью; гематома расположена между отломками костей и вокруг них.

Образование костной мозоли начинается из клеток надкостницы — периоста, эндоста, костного мозга, гаверсовых каналов, соединительной ткани вокруг перелома и внеклеточного вещества (О. Б. Лепешинская). Первичная мозоль состоит из нескольких слоев.

1. Периостальная, наружная, мозоль развивается из клеток надкостницы (callus externus). Эта мозоль охватывает концы костей снаружи в впде муфты, образуя веретенообразное утолщение. Главную роль в образовании мозоли играет внутренний слой надкостницы. Как известно, надкостница имеет три слоя: а) наружный (адвентицпальный), состоящий из соединительной фиброзной ткани, бедной эластическими волокнами, но богатой сосудами и нервами; б) средний (фиброзно-эластический), который, наоборот, богат эластическими волокнами и беден сосудами; в) внутренний (камбиальный), лежащий непосредственно на кости и являющийся специфическим костеобразующим слоем.

При сохранившейся надкостнице, но при большом дефекте костной ткани, например, после операции поднадкостничной резекции кости, образование новой костной ткани из надкостницы идет интенсивно и может заполнить дефект длиной в несколько сантиметров.

2. Эндостальная, или внутренняя, мозоль (callus internus) развивается параллельно развитию наружной, периостальной мозоли из эндостальной ткани обоих отломков, т. е. из костного мозга; процесс идет путем пролиферации клеток эндоста в виде кольца, спаивающего отломки.

Как и в наружной мозоли, здесь имеется воспалительная гиперемия, образование новых сосудов со стороны костного мозга, рассасывание мертвых тканей и жира, развитие остеобластов и остеоидной ткани. Более медленное развитие эндостальной мозоли сравнительно с периостальной объясняется тем, что сосудистая сеть эндостальной мозоли (a. nutritia), которая бедна сосудами, разрушена, в то время как периостальная мозоль снабжена большим количеством сосудов, идущих из окружающих мягких тканей.

3. Интермедиальная, промежуточная, мозоль (callus intermedius) находится между отломками кости, между периостальной и эндосталъной мозолью. Она развивается из гаверсовых каналов, причем в образовании ее принимают участие ткани наружной и внутренней мозоли.

При плотном прилегании одного отломка к другому в правильной позиции эта мозоль совершенно не видна.

4. Параоссальная, околокостная, мозоль (callus paraossalis) развивается в мягких тканях вблизи перелома. Эта мозоль бывает наиболее выражена при сильных ушибах и разрывах тканей и представляется в виде отростков кости, распространяющихся иногда далеко в направлении мышц, межмышечной ткани ив область суставов. Она приобретает сходство с оссифицирующим миозитом и наблюдается часто на месте неправильно сросшихся переломов в виде так называемой избыточной мозоли.

Параллельно этому процессу костеобразования (первый период) с первых же дней после перелома наблюдается и другой вид деятельности местных клеток — процесс рассасывания при помощи остеокластов, образующих в костной ткани ячейки рассасывания. Вначале идет рассасывание концов старой кости, отломков, а затем и избытка вновь образующейся кости. Процесс рассасывания происходит и во втором периоде заживления перелома, когда уже наступает обратное развитие сосудов и происходит так называемое архитектурное оформление костной мозоли. Кроме остеокластов, в костеобразовании принимают участие и фибробласты, которые могут в дальнейшем переходить в остеобласты, а затем в костные клетки. При переломах различных костей сроки образования костной мозоли различны. В среднем в течение приблизительно одного месяца идет образование первичной костной мозоли, т. е. первичной эластической спайки, благодаря которой непрерывность кости восстанавливается, но в ней нет плотности и еще сохраняется при движении подвижность отломков. В течение следующего месяца наступает окостенение мозоли; в остеоидной ткани первичной мозоли откладываются соли извести и уменьшается ее объем. Мозоль приобретает прочность, т. е. образуется вторичная костная мозоль и наступает сращение, консолидация отломков.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 9169 — | 7315 — или читать все.

Регенерация костной ткани (сращение переломов)

Есть два вида регенерации – физиологическая и репаративная. Под физиологической регенерацией понимают восстановление тканевых структур здорового организма по мере их старения и отмирания. Наглядным примером этого является кожа — постоянное отслоение и отшелушивание эпидермиса. Физиологическая регенерация — это постоянный и очень медленный процесс, который не вызывает стрессовой ситуации в организме.

Регенерация костей: основные сведения

Репаративная регенерация — это восстановление поврежденной или потерянной ткани. Степень и качество регенеративного процесса в различных тканей различна. Чем выше дифференцировки ткани (нервная, мышечная), тем меньше у нее способность к восстановлению своей структуры. Поэтому анатомическое восстановление поврежденного участка происходит за счет замещения дефекта соединительной тканью — рубцом. Поврежденая костная ткань способна пройти ряд стадий репаративного процесса и восстановить свою анатомическую форму, гистологическую структуру и функциональную пригодность.

Перелом кости сопровождается повреждением прилежащих мягких тканей и вызывает стрессовую ситуацию, которая сопровождается местной и общей реакциями организма. В процессе восстановления костной ткани происходят сложные общие и местные биологические и биохимические изменения, которые зависят от кровоснабжения кости, возраста больного, общего состояния организма, а также качества лечения.

Источники регенерации

Восстановление целостности кости происходит путем пролиферации клеток остеогенного слоя надкостницы, эндоста, недостаточно дифференцированных плюрипотентных клеток костного мозга, а также вследствие метаплазии гиараосальних тканей.

Современные представления о процессах регенерации костной ткани сочетают концепции неопластической и метапластическая теорий. Преостеогенными клетками считают остеобласты, фибробласты, остеоциты, перициты, гистиоциты, лимфоидные, жировые и эндотелиальные клетки, клетки миелоидного и эритроцитного рядов.

При сращения сломанных костей установлена ​​стадийность репаративного остеогенеза, которая имеет условный характер. Деление на стадии не имеет принципиального значения, поскольку они в динамике перекрываются.

Даже при идеальной репозиции и фиксации отломков дифференцировки различных клеток происходит одновременно, и поэтому стадийность репаративного процесса трудно разграничить. Но для выбора оптимальной тактики лечения больных нужно иметь представление о закономерностях репаративного остеогенеза.

Стадии репаративного остеогенеза

Стадия катаболизма тканевых структур и клеточной инфильтрации. По сравнению с воспалением это стадия альтерации (разрушение). После травмы возникают омертвения поврежденных тканей и распад клеточных элементов гематомы.

Организм человека немедленно реагирует на травму местной фагоцитарной реакцией. Наряду с этим продукты распада, которые являются генетическими индукторами, вместе с гормонами обусловливают репродукцию и пролиферацию различных специализированных клеток (остеоциты, гистиоциты, фиброциты, лимфоидные, жировые и эндотелиальные клетки), то есть мелкоклеточная инфильтрацию, которая длится 6—10 дней.

Стадия дифференцировки клеток длится 10—15 дней. В основном ДНК и РНК, а также анаболические гормоны направляют дифференцировку клеток прогрессирующего мелкоклеточного инфильтрата. Одновременно происходит три типа дифференцировки клеток: фибробластические, хондроидные и остеогенные. Это зависит от условий, при которых происходит репаративный процесс.

При идеальных репозиции и фиксации отломков и достаточном кровоснабжении (применение аппаратного остеосинтеза т.д.) сращение происходит по типу первичного остеогенеза. Дифференцировка большинства клеток сразу направлена на образование остеоидной ткани. Когда фиксация ненадежна или недостаточное кровоснабжение отломков вследствие тяжелых повреждений, дифференцировки клеток происходит путем фиброгенеза с последующей метаплией в хрящевую и костную ткани.

Стадия формирования первичного остеона — образование ангиогенной костной структуры — происходит в течение 16—21 дней. Характеризуется она тем, что возникает полная реваскуляризадия первичной мозоли. Регенерат прорастает капиллярами и начинается минерализация его белковой основы. Появляется мелкопетличная, хаотично ориентирована сетка костных трабекул, которые постепенно сливаются с образованием первичного остеона и гаверсовых канальцев.

Стадия перестройки первичного регенерата или спонгиозации мозоли, — это та стадия, на которой формируется пластинчатая костная ткань. Во время перестройки первичного регенерата костный пластинчатый остеон набирает ориентации над силовыми линиями нагрузки, появляется корковое вещество кости, надкостницы и восстанавливается костно-мозговая полость. Части регенерата, которые за нагрузкой, рассасываются. Все это приводит к полному восстановлению структуры и функции переломанной кости. В зависимости от локализации перелома процесс перестройки и восстановления может длиться от нескольких месяцев до 2—3 лет.

Итак, из закономерностей репаративной регенерации костной ткани вытекают следующие практические выводы:

1) идеальной репозиции и фиксации костных отломков следует добиваться быстрее, к тому же не позднее, чем начнется стадия дифференцировки клеток;

2) поздняя репозиция, любое вмешательство с целью коррекции отломков ведут к повторному разрушению капилляров регенерата и нарушению репаративного остеогенеза;

3) стимулятором образования пластинчатой ​​кости в процессе перестройки первичного регенерата является функциональная нагрузкп, о которой следует помнить при лечении больных.

Теоретически различают три вида репаративной регенерации костной ткани — первичная, первично-замедленная и вторичное сращение. Первичное сращение костей происходит в течение короткого времени первичным остеогенезом за счет образования интермедиарной мозоли. Но для этого следует создать все условия. Прежде всего это наблюдается при забойных и компрессионных переломах костей, часто после идеальной репозиции (диастаз между отломками 50—100 мкм) и надежной фиксации отломков.

Первично-замедленное сращение бывает тогда, когда между неподвижными отломками нет щелей, сращения проходит только по сосудистым каналам (интраканаликулярный остеогенез), т.е. возникает частичное сращение, а полному межкостному сращиванию предшествует резорбция концов отломков. Но с практической точки зрения этот вид репарации следует расценивать как положительный, и поэтому клиницисты придерживаются разделения на два вида восстановления кости — первичное и вторичное.

Вторичное сращение переломанных костей происходит за счет образования менее полноценных видов мозоли — периостальной, эндостальной и параосальной (гематома, мягкие ткани).

Образованием избыточной периостальной и параосальной мозоли организм пытается компенсировать фиксацию отломков, которой не сделал врач. Это природный саногенез организма. В этом случае срок сращения кости значительно увеличивается. По характеру мозоли на рентгенограмме можно сразу оценить качество лечения больного. Чем больше мозоль, тем хуже была фиксация отломков.

Вторичное сращение кости сравнивают с заживлением ран мягких тканей. Но в заживлении поражения двух тканей принципиальная разница. Заживление раны мягких тканей, происходит вторичным натяжением, заканчивается образованием рубца, в то время как при переломе кости в процессе репарации все костные клетки проходят стадию метаплазии, что заканчивается образованием полноценной кости. Однако для того чтобы кость срослась вторично, необходима также надежная фиксация отломков. Если ее не будет, то клетки пройдут стадии фибро- и хондрогенеза, перелом заживет, но кость не срастется.

Читать еще:  Физиологические процессы при артрите

Вопрос о стимуляции репаративного остеогенеза в теоретическом плане остается нерешенным. Попытки ускорить регенерацию костной ткани уже были давно, и сейчас не уменьшается количество поисков.

Средства стимуляции остеорепарации

1) механические (раздражение периоста постукиванием молоточком по месту перелома, локальный массаж, дозированная нагрузка конечности, управляемое динамическая нагрузка сегмента конечности аппаратом Пустовойта т.п.);

2) физические (ИК, УВЧ—излучения, диатермия, электрофорез лекарств, ультразвуковая, лазерная, магнитная терапия, оксибаротерапия, электростимуляция и т.д.);

3) медикаментозные (метионин, цистеин, карбоксилин, витамины, нуклеиновые кислоты, ретаболил, тиреокальцитонин, кальцитрин, экзогенная гомологична РНК, мумие и т.д.);

4) биологические (локальные инъекции аутокрови, некрогормонотерапия, экстракты органов и тканей по И. Л. Зайченко, использование переходного эпителия мочевых путей, декальцинованого матрикса и молотой кости, костного трансплантата и т.д.).

Следует отметить, что некоторые средства стимуляции (лазерная, магнитная терапия и др.) И ныне еще ​​не имеют полного теоретического обоснования, хотя эмпирически доказано их положительное влияние на срастание костей. Применение стимулирующих средств в зависимости от их целенаправленного действия следует связывать со стадией репаративного процесса в кости. Например, сначала назначают такие средства, которые способствуют обменным процессам, клеточной инфильтрации и дифференцировке клеток. На стадии формирования пластинчатой ​​кости важен выбор оптимальной нагрузки костного сегмента.

Следует помнить, что сращиванию перелома кости помогает комплекс благоприятных факторов, но в условиях идеальной репозиции отломков, надежной их фиксации, полноценного питания и нормального обмена веществ. Если этого не будет, то репаративный процесс нарушается, и кость может не срастись независимо от вида стимулирования.

Костная ткань. Функции костной ткани. Строение костной ткани

В состав скелета любого взрослого человека входит 206 различных костей, все они различны по строению и роли. На первый взгляд они кажутся твердыми, негибкими и безжизненными. Но это ошибочное впечатление, в них непрерывно происходят различные обменные процессы, разрушение и регенерация. Они, в совокупности с мышцами и связками, образуют особую систему, что носит название «костно-мышечная ткань», основная функция которой — опорно-двигательная. Она образована из нескольких видов особых клеток, которые различаются по структуре, функциональным особенностям и значению. О костных клетках, их строение и функциях далее и пойдет речь.

Строение костной ткани

Это отдельный вид соединительной ткани, из нее образуются все кости в человеческом теле. В ее состав входят особые клетки и межклеточное вещество. Последнее включает органический матрикс, состоящий из коллагеновых волокон (90-95% от общей массы) и минеральных компонентов, в основном солей кальция (5-10%). Благодаря такому составу костная ткань человека имеет гармоничное сочетание твердости и эластичности. Различают три группы клеток: остеокласты (слева), остеобласты (посередине), остеоциты (справа на фото).

Более подробно остановимся на них далее. Коллаген, содержащийся в матриксе, имеет отличия от своих аналогов, находящихся в других тканях, главным образом за счет того, что содержит больше специфических полипептидов. Волокна расположены, как правило, параллельно уровню наиболее вероятных нагрузок на кость. Именно благодаря нему сохраняется эластичность и упругость.

Если кость подвергнуть действию соляной кислоты, то минеральные вещества будут растворены, а вот органические (оссеин) останутся. Они сохранят форму, но станут чрезмерно гибкими и сильно подверженными деформированию. Такое состояние характерно для маленьких детей. У них высоко содержание оссеина, поэтому кости более эластичны, чем у взрослых. И обратный случай, когда теряются органические вещества, но остаются минеральные. Это происходит, если, к примеру, кость обжечь: она сохранит свою форму, но приобретет вместе с тем сильную хрупкость и может разрушиться даже от незначительного прикосновения. Такие изменения состав костной ткани претерпевает в старости. Доля минеральных солей доходит до 80% от всей массы. Поэтому пожилые люди более подвержены различного рода переломам и травмам.

Если установить плотность костной ткани (объем), то это позволит оценить прочность скелета и его отдельных частей. Такие исследования проводятся с использованием компьютерной томографии. Своевременная диагностика позволяет начать лечение или поддерживающую терапию вовремя.

Остеобласты (активные): особенности строения

Остеобласты – это клетки костной ткани, располагающиеся в верхних ее слоях, имеющие многоугольную, кубическую форму с различного вида отростками. Внутреннее содержимое мало чем отличается от других. Хорошо развитый зернистый эндоплазматический ретикуллум содержит различные элементы, рибосомы, аппарат Гольджи, округлой или овальной формы ядро богатое хроматином и содержащее ядрышко. Снаружи эти клетки костной ткани окружены тончайшими микрофибриллами.

Главная функция остеобластов – синтез компонентов межклеточного вещества. Это коллаген (преимущественно первого типа), гликопротеины матрикса (остеокальцин, остеонектин, остеопонтин, костный сиалопротеин), протеогликаны (бигликан, гиалуроновая кислота, декорин), а также различные костные морфогенетические белки, факторы роста, ферменты, фосфопротеины. Нарушение выработки всех этих соединений остеобластами наблюдается при некоторых заболеваниях. Например, недостаток витамина С (цинга) у детей характеризуется нарушением развития и роста костей вследствие дефекта синтеза коллагена и гликозаминогликанов. По этой же причине и замедляется восстановление костной ткани, заживление при переломах. Так как остеобласты фактически отвечают за рост, то присутствуют исключительно в развивающейся костной ткани.

Механизм минерализации остеобластами органического матрикса

Существует два способа:

  1. Отложение кристаллов гидроксилата вдоль фибрилл коллагена из перенасыщенной внеклеточной жидкости. Особую роль при этом отводят некоторым протеогликанам, которые связывают кальций и удерживают его в зонах зазоров.
  2. Секреция особых матричных пузырьков. Это мелкие мембранные структуры, которые синтезируются и выделяются остеобластами. В них в большой концентрации содержится фосфат кальция и щелочная фосфатаза. Особая микросреда, создаваемая внутри пузырьков, благоприятствует образованию первых гидроксиапатитовых кристаллов.

Скорость минерализации остеоида (костная ткань на стадии формирования) может существенно меняться, в норме она занимает около 15 суток. Нарушения могут происходить при снижении концентрации ионов кальция в крови или фосфата. Результатом этого является размягчение и деформация костей – остеомаляция. Аналогичные нарушения наблюдаются, например, при рахите (дефицит витамина D).

Неактивные (покоящиеся) остеобласты

Они образуются из активных остеобластов, у нерастущей кости покрывают около 80-95% ее поверхности. Они имеют уплощенную форму с веретеновидным ядром. Остальные органеллы редуцированы. Но сохраняются рецепторы, реагирующие на различные гормоны и факторы роста. Между покоящимися остеобластами и остеоцитами сохраняется связь и таким образом образуется система, регулирующая минеральный обмен. Если происходит какое-либо повреждение (травмы, переломы), то они активизируются, и начинается активный синтез коллагена, выработка органического матрикса. Другими словами, за счет их происходит регенерация костных тканей. В то же время они могут быть причиной злокачественной опухоли – остеосаркомы.

Остеоциты: строение и функции

Эти клетки составляют основу зрелой костной ткани. Форма у них веретенообразная, с множеством отростков. Органелл значительно меньше по сравнению с остеобластами, есть округлое ядро (в нем преобладает гетеохроматин) с ядрышком. Остеоциты располагаются в лакунах, но непосредственно с матриксом не соприкасаются, а окружены тонким слоем костной жидкости. За счет нее осуществляется питание клеток.

Аналогично отделены и их отростки, имеющие достаточно большую длину до 50 мкм, располагающиеся в специальных канальцах. Их очень много, костная ткань буквально пронизана ими, они образуют ее дренажную систему, в которой и содержится тканевая жидкость. Через нее осуществляется обмен веществ между межклеточным веществом и клетками. Также стоит отметить, что они не делятся, а образуются из остеобластов и являются основными компонентами в сформировавшейся костной ткани.

Основная функция остеоцитов – поддержание нормального состояния костного матрикса и баланса кальция и фосфора в организме. Они способны воспринимать механические напряжения, и чувствительны к электрическим потенциалам, возникающим при действии деформирующих сил. Реагируя на них, они запускают локальный процесс, при котором соединительная костная ткань начинает перестраиваться.

Остеокласты

Такое название получили крупные клетки, содержащие от 5 до 100 ядер, имеющие моноцитарное происхождение, разрушающие кости и хрящи или, по-другому, вызывающие их резорбцию. В цитоплазме остеокластов содержится много митохондрий, элементов ЭПС (зернистой) и аппарат Гольджи, рибосомы, а также различные по функции лизосомы. В ядрах содержится большое количество хроматина и есть хорошо различимые ядрышки. Также имеется достаточное количество цитоплазматических отростков, больше всего их располагается на поверхности, прилегающей к разрушаемой кости. Они увеличивают площадь соприкосновения с ней. Костная ткань начинает разрушаться при повышении уровня особого гормона (паратиреоидного), который приводит к активации остеокластов. Механизм этого процесса связывают с выделением ими углекислого газа, который под воздействием специального фермента (карбоангидраза) превращается в кислоту, имеющую название угольная, она и растворяет соли кальция.

Механизм резорбции костной ткани

Стоит отметить, что процесс разрушения протекает циклически, и периоды высокой активности каждой клетки неизменно сменяются периодами покоя. Резорбция протекает в несколько этапов:

  1. Прикрепление остеокласта к разрушаемой поверхности кости, при этом наблюдается выраженная перестройка его цитоскелета.
  2. Окисление содержимого лакун. Это происходит либо путем выделения в них содержимого вакуолей, имеющего кислую среду, либо в результате действия протонных насосов.
  3. Разрушение минерального компонента матрикса.
  4. Растворение органических соединений в результате действия ферментов, секретируемых остеокластами в лакуну и активированными кислой средой.
  5. Выведение продуктов разрушения костной ткани.

Регуляция деятельности остеокластов определяется общими и местными факторами. К первым, например, относятся паратгормон, витамин D, они стимулируют активность. А угнетающими являются кальцитонин и эстрогены. К местным относится такой фактор, как создание электрического локального поля при механическом напряжении, к которому эти клетки очень чувствительны.

Строение грубоволокнистой костной ткани

Второе ее название — ретикулофиброзная. Она формируется у зародыша, как будущая основа костей. У взрослого же человека ее присутствие минимально, она сохраняется в швах черепа после того, как они зарастают и в зонах, где сухожилия прикрепляются к костям, а также в участках остеогенеза, например, при заживлении различного рода переломов. Строение костной ткани этого вида специфическое. Коллагеновые волокна собраны в плотные пучки, которые расположены неупорядоченно, имеют между собой «перекладины». Она обладает низкой механической прочностью, содержание остеоцитов значительно выше по сравнению с пластинчатой разновидностью. В патологических условиях наращивание костной ткани этого типа происходит при переломе кости или при болезни Педжета.

Особенности пластинчатой костной ткани

Она образована костными пластинками, имеющими толщину 4-15 мкм. Они, в свою очередь, состоят их трех компонентов: остеоцитов, основного вещества и коллагеновых тонких волокон. Из этой ткани образованы все кости взрослого человека. Волокна коллагена первого типа лежат параллельно относительно друг друга и ориентированы в определенном направлении, у соседних же костных пластинок они направлены в противоположную сторону и перекрещиваются практически под прямым углом. Между ними находятся тела остеоцитов в лакунах. Такое строение костной ткани обеспечивает ей наибольшую прочность.

Губчатое вещество кости

Встречается также название «трабекулярное вещество». Если проводить аналогию, то структура сравнима с обычной губкой, построенной из костных пластинок с ячейками между ними. Расположены они упорядоченно, в соответствии с распределенной функциональной нагрузкой. Из губчатого вещества в основном построены эпифизы длинных костей, часть смешанных и плоских и все короткие. Видно, что в основном это легкие и в то же время прочные части скелета человека, которые испытывают нагрузку в различных направлениях. Функции костной ткани находятся в прямой взаимосвязи с ее строением, которое в данном случае обеспечивает большую площадь для метаболических процессов, осуществляемых на ней, придает высокую прочность в совокупности с небольшой массой.

Плотное (компактное) вещество кости: что это?

Из компактного вещества состоят диафизы трубчатых костей, кроме того, оно тонкой пластинкой покрывает их эпифизы снаружи. Его пронизывают узкие каналы, через них проходят нервные волокна и кровеносные сосуды. Некоторые из них располагаются параллельно костной поверхности (центральные или гаверсовы). Другие выходят на поверхность кости (питательные отверстия), через них внутрь проникают артерии и нервы, а наружу — вены. Центральный канал, в совокупности с окружающими его костными пластинками, образует так называемую гаверсову систему (остеон). Это основное содержимое компактного вещества и их рассматривают как его морфофункциональную единицу.

Остеон – структурная единица костной ткани

Второе его название — гаверсова система. Это совокупность костных пластинок, имеющих вид цилиндров вставленных друг в друга, пространство между ними заполняют остеоциты. В центре располагается гаверсов канал, через него проходят обеспечивающие обмен веществ в костных клетках кровеносные сосуды. Между соседними структурными единицами есть вставочные (интерстициальные) пластинки. По сути, они являются остатками остеонов, существовавших ранее и разрушившихся в тот момент, когда костная ткань претерпевала перестройку. Также существуют еще генеральные и окружающие пластинки, они образуют самый внутренний и наружный слой компактного вещества кости соответственно.

Читать еще:  Чем характеризуется сколиоз 4 й степени и как его лечить

Надкостница: строение и значение

Исходя из названия, можно определить, что она покрывает кости снаружи. Прикрепляется она к ним с помощью коллагеновых волокон, собранных в толстые пучки, которые проникают и сплетаются с наружным слоем костных пластинок. Имеет два выраженных слоя:

  • наружный (его образует плотная волокнистая, неоформленная соединительная ткань, в ней преобладают волокна, располагающиеся параллельно к поверхности кости);
  • внутренний слой хорошо выражен у детей и менее заметен у взрослых (образован рыхлой волокнистой соединительной тканью, в которой есть веретенообразные плоские клетки – неактивные остеобласты и их предшественники).

Надкостница выполняет несколько важных функций. Во-первых, трофическую, то есть обеспечивает кость питанием, поскольку на поверхности содержит сосуды, которые проникают внутрь вместе с нервами через специальные питательные отверстия. Эти каналы питают костный мозг. Во-вторых, регенераторную. Она объясняется наличием остеогенных клеток, которые при стимуляции трансформируются в активные остеобласты, вырабатывающие матрикс и вызывающие наращивание костной ткани, обеспечивающие ее регенерацию. В-третьих, механическую или опорную функцию. То есть обеспечение механической связи кости с другими прикрепляющимися к ней структурами (сухожилиями, мышцами и связками).

Функции костной ткани

Среди основных функций можно перечислить следующие:

  1. Двигательная, опорная (биомеханическая).
  2. Защитная. Кости оберегают от повреждений головной мозг, сосуды и нервы, внутренние органы и т. д.
  3. Кроветворная: в костном мозге происходит гемо — и лимфопоэз.
  4. Метаболическая функция (участие в обмене веществ).
  5. Репараторная и регенераторная, заключающиеся в восстановлении и регенерации костной ткани.
  6. Морфобразующая роль.
  7. Костная ткань – это своеобразное депо минеральных веществ и ростовых факторов.

Репаративная регенерация костной ткани

Регенерация костной ткани может быть физиологической и репаративной. Физиологическая регенерация заключается в перестройке костной ткани, в процессе которой происходит частичное или полное рассасывание костных структур и создание новых. Репаративная (восстановительная) регенерация наблюдается при переломах костей. Этот вид регенерации является истинным, так как образуется нормальная костная ткань.

Восстановление целостности поврежденной кости происходит путем пролиферации клеток камбиального слоя надкостницы (периоста), эндоста, малодифференцированных плюрипотентных клеток стромы костного мозга, а также в результате метаплазии малодифференцированных мезенхимных клеток параоссальных тканей. Последний вид репаративной регенерации костной ткани наиболее активно проявляется за счет мезенхимных клеток адвентиции врастающих кровеносных сосудов. По современным представлениям, остеогенными клетками-предшественниками являются остеобласты, фибробласты, остеоциты, парациты, гистиоциты, лимфоидные, жировые и эндотелиальные клетки, клетки миелоидного и эритроцитарного ряда. В гистологии принято называть костеобразование, возникающее на месте волокнистой соединительной ткани, десмальным; на месте гиалинового хряща — энхондральным; в области скопления пролиферирующих клеток скелетогенной ткани — костеобразованием по мезенхимному типу.

Повреждение костной ткани сопровождается общими и местными изменениями после травмы; посредством нейрогуморальных механизмов в организме включаются адаптационные и компенсаторные системы, направленное на выравнивание гомеостаза и восстановление поврежденной костной ткани. Образующиеся в зоне перелома продукты распада белков и других составных частей клеток являются одним из пусковых механизмов репаративной регенерации. Среди продуктов распада клеток наибольшее значение имеют химические вещества, обеспечивающие биосинтез структурных и пластических белков. В последние годы доказано (А. А. Корж, А. М. Белоус, Е. Я. Панков), что такими индукторами являются вещества нуклеиновой природы (рибонуклеиновая кислота), которые влияют на дифференцировку и биосинтез белков в клетке.

В механизме репаративной регенерации костной ткани выделяют следующие стадии:
1) катаболизм тканевых структур, дедифференцирование и пролиферация клеточных элементов;
2) образование сосудов;
3) образование и дифференцирование тканевых структур;
4) минерализация и перестройка первичного регенерата, а также реституция кости.

В зависимости от точности сопоставления отломков костей, надежного и постоянного их обездвиживания, при сохранении источников регенерации и прочих равных условиях наблюдаются различия в васкуляризации костной ткани. Выделяют (Т. П. Виноградова, Г. Н. Лаврищева, В. И. Стенула, Э. Я. Дубров) 3 вида репаративной регенерации костной ткани: по типу первичного, первично-задержанного и вторичного сращения костных отломков. Сращение костей по первичному типу происходит при наличии небольшого диастаза (50— 100 мкм) и полном обездвиживании сопоставленных отломков костей. Сращение отломков наступает в ранние сроки путем непосредственного формирования костной ткани в интермедиарном пространстве.

В диафизарных отделах костей на раневой поверхности отломков образуется скелетогенная ткань, продуцирующая костные балки, что приводит к возникновению первичного костного сращения при малом объеме регенерата. При этом в регенерате на стыке костных концов не отмечается образования хрящевой и соединительной тканей. Такой вид сращения костей, с образованием минимальной периостальной мозоли, когда соединение отломков происходит непосредственно за счет костных балок, является наиболее совершенным. Этот вид сращения может наблюдаться при переломах без смещения отломков, под надкостничных переломах у детей, применении прочного внутреннего и чрескостного компрессионного остеосинтеза.

Первично-задержанный тип сращения имеет место при отсутствии щели между прочно фиксированными неподвижными костными отломками и характеризуется ранним, но лишь частичным сращением в области сосудистых каналов при внутриканальном остеогенезе. Полному интермедиарному сращению отломков предшествует резорбция их концов.

При вторичном типе сращения, когда вследствие неудовлетворительного сопоставления и фиксации отломков имеются подвижность между ними и травматизация новообразованного регенерата, костная мозоль формируется главным образом со стороны периоста, проходя десмальную и энхондралъную стадии. Периостальная костная мозоль обездвиживает отломки, и только затем происходит сращение непосредственно между ними.

Степень фиксации отломков костей определяется соотношением величины смещающих усилий и усилий, препятствующих этому смещению (В. И. Стецула). Если избранный метод фиксации отломков костей обеспечит полное сопоставление отломков, восстановление продольной оси кости, а также преобладание сил, препятствующих их смещению, фиксация будет надежной. Для сохранения в период формирования сращения постоянной неподвижности на стыке отломков необходимо применять средства фиксации, позволяющие создать значительное превышение величины устойчивости отломков над смещающими усилиями. Запас устойчивости отломков дает возможность рано приступить к активной функции и нагрузке на конечность. Сдавление отломков между собой (компрессия) непосредственно не стимулирует репаративную регенерацию, а усиливает степень обездвиживания, чем способствует более быстрому образованию костной мозоли. В зависимости от степени сдавления отломков, по данным В. И. Стецулы, репаративная регенерация костной ткани протекает различно. Слабая компрессия (45 — 90 Н/см2) не обеспечивает достаточной неподвижности отломков, сращение отломков и сроки его приближаются к вторичному типу. Создание значительной компрессии (250 — 450 Н/см2) приводит к уменьшению щели между отломками и резорбции их концов, к замедлению образования костной мозоли между ними. В этом случае регенерация протекает по типу первичнозадержанного сращения. Наиболее оптимальные условия для репаративной регенерации костной ткани создаются при компрессии средней величины (100 — 200 Н/см2).

Процесс восстановления костей после травмы определяется целым рядом факторов. У детей сращение костей происходит быстрее, чем у взрослых. Имеют значение анатомические условия (наличие надкостницы, характер кровоснабжения), а также тип перелома. Косые и винтообразные переломы срастаются быстрее, чем поперечные. Благоприятные условия для сращения костей создаются при вколоченных и поднадкостничных переломах.

Уровень репаративной регенерации костной ткани во многом определяется степенью травматизации тканей в области перелома: чем больше повреждены источники костеобразования, тем медленнее протекает процесс образования костной мозоли. Учитывая последнее обстоятельство, при лечении переломов следует отдать предпочтение методам, не связанным с нанесением дополнительной травмы в области перелома, а оперативные вмешательства не должны быть травматичными.

В формировании костной мозоли большое значение имеет и соблюдение механических факторов: точного сопоставления, создания контакта и надежного обездвиживания отломков. При остеосинтезе основным условием для сращения костей является неподвижность отломков.

При наружном чрескостном остеосинтезе за счет сдавления и фиксации на протяжении отломков костей спицами, закрепленными в аппарате, на стыке отломков создаются неподвижность и оптимальные условия для формирования первичного костного сращения. На стыке костных отломков формирование сращения начинается с образования эндостального костного сращения, периостальная реакция появляется значительно позже. Точная репозиция и стабильная фиксация отломков аппаратом создают условия к компенсации внутрикостного и местного кровотока, а ранняя нагрузка способствует нормализации трофики. При дистракции вначале возникают условия для формирования костного регенерата между медленно растягиваемыми отломками, а затем формируется костное сращение на стыке регенератов (В. И. Стецула). Установлено, что при дистракции возникает локальный остеопороз, при компрессии этого не наблюдается. Обездвиживание отломков достигается жесткостью аппарата, а также натяжением тканей, связывающих отломки, и мышечных футляров. В этих условиях запас устойчивости отломков возрастает до величин, необходимых для создания постоянной неподвижности и завершения «вторичной» оссификации регенерата.

При дистракции условия формирования между отломками вторичного костного сращения создаются в результате непосредственного обездвиживания костных отломков и «репаративного остеогенеза». В метаэпифизарных отделах костей, имеющих хорошее кровоснабжение, при прочном компрессионном остеосинтезе в короткие сроки происходит сращение по всей площади соприкосновения отломков. При диафизарных переломах репаративная реакция начинается в отдалении от места перелома, а на месте перелома появляется с восстановлением кровоснабжения. Вначале формируется эндостальное, а затем, несколько позже, периостальное сращение. Интермедиарное сращение образуется после восстановления кровоснабжения и расширения сосудистых каналов в концах отломков, в которых формируются новые остеоны (В. И. Стецула). При косых и винтообразных диафизарных переломах с хорошо сопоставленными отломками, когда сохраняется непрерывность костного мозга и внутрикостных сосудов, непосредственно в зоне перелома формируется быстрое костное сращение.

При дистракции оптимальные условия для репаративной регенерации костной ткани создаются в условиях неподвижности отломков и медленной дистракции. При несоблюдении этих условий диастаз заполняется волокнистой соединительной тканью, постепенно превращающейся в фиброзную ткань, а при выраженной подвижности отломков образуется также хрящевая ткань и формируется ложный сустав. При дозированной дистракции и неподвижности отломков диастаз между костными концами заполняется низкодифференцированной скелетогенной тканью, образующейся в условиях пролиферации стромы костного мозга. Новообразование костных балок появляется на обоих отломках, продолжается весь период дистракции на вершинах костной части регенерата, соединенных между собой коллагеновыми волокнами. С увеличением диастаза и созреванием обеих костных частей регенерата процесс новообразования продолжается на границе с соединительнотканной прослойкой путем отложения костного вещества на поверхности пучков коллагеновых волокон (десмальная оссификация).

Увеличение размеров регенерата в процессе его удлинения происходит за счет новообразования коллагеновых волокон в самой соединительнотканной прослойке; соединительнотканная прослойка в дистракционном регенерате выполняет функцию «зоны роста» (В. И. Стецула). После прекращения дистракции, при условии сохранения неподвижности отломков, фиброзная прослойка на стыке костных регенератов подвергается путем десмальной оссификации замещению костной тканью и последующей органной перестройке. В процессе лечения органной перестройке костной ткани и минерализации способствует дозированная нагрузка на конечность. При отсутствии неподвижности отломков процесс оссификации соединительнотканной прослойки резко задерживается и на границе ее с костными частями регенерата формируются замыкающие пластинки. При выраженной неподвижности отломков наступает частичная резорбция концов костных регенератов с замещением фиброзной тканью, может образоваться ложный сустав.

При удлинении различных сегментов конечностей и при разных уровнях остеотомии процесс формирования регенерата и перестройка его протекают однотипно. Однако в зависимости от уровня пересечения кости дистракцию начинают не сразу после операции, а только после соединения костных отломков новообразованной соединительной тканью. При вмешательстве на уровне метафиза ее начинают после операции через 5 — 7 дней, а диафиза — через 10—14 дней.

С помощью аппаратов оказалось возможным постепенное разъединение на уровне зоны роста эпифиза и метафиза костей. Такой способ удлинения трубчатых костей получил название дистракционного эпифизеолиза.

При дистракционном эпифизеолизе формирование регенерата протекает неодинаково. Чем крупнее участок кости, отрывающийся с зоной роста при остеоэпифизеолизе, тем активнее протекает репаративная регенерация костной ткани. Когда с пластинкой роста отрывается небольшое количество костной ткани, диастаз в основном заполняется регенератом, образующимся со стороны метафиза. Формирование костного регенерата на месте удлинения происходит также со стороны надкостницы и эпифиза.

Уровень репаративной регенерации костной ткани во многом зависит от степени травматизации тканей в области перелома: чем больше повреждены источники костеобразования, тем медленнее протекает процесс образования костной мозоли. Поэтому при лечении пострадавших с переломами предпочтительны методы, не связанные с нанесением дополнитель¬ной травмы.

В период формирования костной мозоли важно соблюдать механические факторы: точное сопоставление, создание контакта и надежного обездвиживания отломков.

В современных условиях имеется возможность способствовать улучшению условий репаративной регенерации костной ткани. Для этих целей применяют анаболические стероиды, электромагнитное поле, некоторые препараты.

Анаболические стероиды (ретаболил) влияют на процессы белкового обмена, способствуют синтезу белка, препятствуют развитию в организме посттравматических катаболических процессов и могут положительно влиять на процессы репаративной регенерации костной ткани. Особенно это влияние проявляется, когда репаративные процессы бывают по тем или иным причинам заторможены. Ретаболил вводят внутримышечно по 1 ампуле 3 раза с 10-дневным интервалом.

Читать еще:  Строение и функции голеностопа

Электромагнитное поле создают искусственным путем: в одних случаях погружают в костную ткань специальные электроды и подключают к ним внешний источник питания, в других — с помощью магнитов. В последнем случае часть конечности, подлежащую воздействию, помещают в зону электромагнитного поля. Эффект зависит от многих условий: силы электромагнитного поля, частоты и продолжительности действия. Имеет значение и период репаративной регенерации кости. Проблема эта находится в стадии интенсивного научного изучения. Установлено, что в зависимости от создаваемых параметров электромагнитного поля можно улучшать регенерацию костной ткани или тормозить этот процесс.

Как срастаются кости после перелома

Знание ответа на вопрос о том, каким образом и сколько срастается перелом, может стать необходимой помощью в лечении. Время заживления может разниться в зависимости от степени повреждения. Существуют три степени тяжести:

  1. Легкие переломы. Период заживления около 20-30 дней. В эту группу относят травмы пальцев, кисти и ребер.
  2. Переломы средней тяжести. Заживление происходит в срок от 1 до 3 месяцев.
  3. Тяжелые переломы в большинстве случаев требуют оперативного лечения, а период полного заживления может достигать 1 года.

По типу увечий различают открытые и закрытые переломы.

Стадии регенерации костной ткани

В медицинской практике выделяют следующие стадии регенерации:

  1. Стадия катаболизма тканевых структур и инфильтрации клеток. После повреждения ткань начинает отмирать, появляются гематомы, а клетки распадаются на элементы.
  2. Стадия дифференцировки клеток. Для этого этапа характерно первичное срастание костей. При хорошем кровоснабжении сращение проходит по типу первичного остеогенеза. Длительность процесса занимает 10-15 суток.
  3. Стадия формирования первичного остеона. На поврежденном участке начинает образовываться костная мозоль. Происходит первичное срастание. Ткань пробивается капиллярами, а ее белковая основа начинает затвердевать. Прорастает хаотичная сеть костных трабекул, которые, соединяясь, образуют первичный остеон.
  4. Стадия спонгиозации мозоли. Для этого этапа характерно появление пластичного костного покрова, появляется корковое вещество, восстанавливается поврежденная структура. В зависимости от тяжести повреждения эта стадия может длиться как несколько месяцев, так и до 3 лет.

Обязательным условием качественного сращения разломов костной ткани является протекание всех стадий заживления без осложнений и нарушений.

Скорость заживления переломов

Процесс срастания костей сложен и занимает продолжительное время. При закрытом переломе в одном месте конечности скорость заживления высока и составляет от 9 до 14 дней. Множественное повреждение заживает в среднем около 1 месяца. Самым опасным и долгим для восстановления считается открытый перелом, период заживления в таких случаях превышает 2 месяца. При смещении костей относительно друг друга еще больше увеличивается длительность процесса регенерации.

Причинами низкой скорости заживления могут стать неправильное лечение, избыточная нагрузка на сломанную конечность или недостаточный уровень кальция в организме.

Скорость заживления переломов у детей

Лечение перелома у ребенка протекает на 30% быстрее, чем у взрослых. Обусловлено это высоким содержанием белка и оссеина в детском скелете. При этом надкостница толще и имеет хорошее кровоснабжение. У детей постоянно увеличивается скелет, и наличие зон роста еще больше ускоряет срастание костей. У детей от 6 до 12 лет при повреждении костной ткани наблюдается коррекция ее отломков без хирургического вмешательства, поэтому в большинстве случаях врачи обходятся лишь наложением гипса.

Как и у взрослых, для заживления травмы важен возраст ребенка и то, как близко с суставом находится перелом.

Чем меньше возраст, тем больше вероятность коррекции костных отломков организмом. Чем ближе повреждение к зоне роста, тем быстрее оно заживет. Но травмы со смещением заживают медленнее.

Самые частые переломы у детей:

  1. Полные. Кость в таких случаях разъединяется на несколько частей.
  2. Компрессионные переломы происходят по причине сильного сдавливания вдоль оси трубчатой кости. Заживление происходит за 15-25 дней.
  3. Перелом по типу «зеленой ветви». Происходит изгиб конечности, при этом образуются трещины и отломки. Возникает при чрезмерном давлении с силой, недостаточной для полного разрушения.
  4. Пластический изгиб. Появляется в коленных и локтевых суставах. Наблюдается частичное разрушение костной ткани без рубцов и трещин.

Средние сроки сращения переломов у взрослых

сколько срастается перелом

У взрослых процесс срастания костей длится дольше. Происходит это за счет того, что с возрастом надкостница становится тоньше, а кальций выводится из организма токсинами и вредными веществами. Заживление переломов верхних конечностей происходит медленно, но они представляют меньшую опасность для человека, чем повреждения нижних конечностей. Заживают они в следующие сроки:

  • фаланги пальцев — 22 дня;
  • кости запястья — 29 дней;
  • лучевая кость — 29-36 дней;
  • локтевая кость — 61-76 дней;
  • кости предплечья — 70-85 дней;
  • плечевая кость — 42-59 дней.

Сроки заживления переломов нижних конечностей:

  • пяточная кость — 35-42 дня;
  • плюсневая кость — 21-42 дня;
  • лодыжка — 45-60 дней;
  • надколенник — 30 дней;
  • бедренная кость — 60-120 дней;
  • кости таза — 30 дней.

У взрослых только на 15-23 день после повреждения появляются первичные очаги костной мозоли, они хорошо просматриваются на рентгене. Совместно с этим или на 2-3 дня раньше притупляются кончики отломков костей, а контуры их в области мозоли смазываются и тускнеют. На 2 месяц концы становятся гладкими и мозоль приобретает четкие очертания. В течение года она уплотняется и постепенно выравнивается по поверхности кости. Сама трещина исчезает лишь на 6-8 месяц после травмы.

Как долго будет продолжаться заживление, затрудняется ответить даже опытный врач-ортопед, ведь это индивидуальные показатели, зависящие от большого количества условий.

Факторы, влияющие на скорость сращения костей

Заживление сломанной кости зависит от ряда факторов, которые либо ускоряют его, либо препятствуют ему. Сам процесс регенерации индивидуален для каждого пациента.

Оказание первой помощи имеет решающее значение для скорости заживления. При открытом переломе важно не допустить попадания в рану инфекции, т.к. воспаление и нагноение замедлят процесс регенерации.

Заживление происходит быстрее при переломе мелких костей.

На скорость восстановления влияет возраст пострадавшего, область и место поражения костного покрова, а также прочие условия.

Сращение протекает медленнее, если у человека присутствуют заболевания костной ткани (остеопороз, остеодистрофия). Также попадание мышечных волокон в пространство между отломками кости замедляет восстановление кости.

Кость начинает лучше срастаться при наличии следующих факторов:

  • соблюдение указаний врача;
  • ношение гипса на протяжении всего назначенного периода;
  • снижение нагрузки на травмированную конечность.

Помощь, доступная для сращения костных отломков

Помогает сращению костных обломков употребление в пищу фруктов и овощей, продуктов, богатых кальцием. Ими могут быть творог, рыба, сыр и кунжут.

Употребление яичной скорлупы делает сращение более быстрым благодаря наличию в ней кальция. Следует окунуть скорлупу в кипяток, измельчить в порошок и принимать 2 раза в день по 1 ч. л.

Мумие также обеспечит организм всеми необходимыми минеральными веществами. Его нужно принимать 3 раза в день по половине чайной ложки, разбавив теплой водой. Помогает сращению пихтовое масло. Необходимо смешать 3-4 капли с мякишем хлеба и съесть его.

При медленном заживлении назначаются лекарства, ускоряющие процесс восстановления. В этом помогут препараты, способствующие образованию хрящевой ткани, — Терафлекс, Хондроитин, комбинации хондроитина с глюкозамином. Прием назначает только лечащий врач.

При формировании костной мозоли до окончания восстановления костей следует принимать препараты кальция, фосфора и витамина D. Обязательным условием приема таких препаратов является назначение врача, который делает назначение исходя из стадии перелома.

Чтобы предотвратить развития остеомиелита, пациентам с открытыми переломами прописывают иммуномодуляторы — натрия нуклеинат, Левамизол и Тималин.

Для регулирования фагоцитоза и клеточного иммунитета назначают липополисахариды — Пирогенал, Продигиозан.

Пожилым людям назначают кальцитонины (Кальцитрин, Кальсинар), а в редких ситуациях — биофосфонаты и экстракты фтора. В ситуациях, когда сращение отломков собственными силами организма невозможно, применяют анаболические стероиды.

Незаменимым народным рецептом принято считать настойку шиповника. Для ее приготовления следует 1 ст. л. измельченных плодов шиповника залить кипятком и дать настояться 6 часов. Отвар обязательно нужно процедить и принимать по 1 ст. л. 5-6 раз в день. Шиповник ускоряет восстановительные процессы, регенерацию костей и повышает иммунитет.

Регенерация костной ткани (заживление, консолидация перелома)

Механическое повреждение тканей в зоне перелома вызывает асептическое воспаление, которое проходит определённые фазы — альтерации, экссудации и пролиферации. Возникают гиперемия, серозное пропитывание тканей, эмиграция лейкоцитов с образованием отёка тканей, что проявляется клиническими признаками отёка в месте перелома (увеличением объёма мягких тканей, появлением уплотнения). Одновременно с отёком происходит процесс альтерации — разрушения с участием остеокластов, некроза погибших или повреждённых клеток мягких тканей и кости — остеокластоз. Со 2-3-го дня начинается процесс образования мезенхимальной ткани, который продолжается в течение 10-14 дней (I стадия сращения перелома).

Рис. 70. Этапы формирования костной мозоли: а — гематома при переломе, расположенная между костными отломками; б — грануляционная мозоль; в — фиброзно-костная (фиброзно-хрящевая) мозоль; г — окончательная костная мозоль.

Источник формирования клеточных элементов — клетки периоста, эндоста, соединительной ткани, окружающей место перелома, гаверсовых каналов (каналов остеона), костного мозга (рис. 70).

Развившаяся юная мезенхимальная ткань заполняет дефект в кости, пространство, занятое гематомой — как между, так и вокруг костных отломков, удерживая последние. В зоне новообразованной ткани происходят сложные биохимические процессы, определяющие условия регенерации тканей. Так, накопление ацетилхолина и гистамина определяет гиперемию — расширение сосудов и в связи с этим улучшение местного кровотока; накапливается кислая, а затем щелочная фосфатаза, увеличивается накопление фосфора и кальция за счёт как декальцинации костных отломков, так и поступления с кровью. В этой стадии идёт процесс активного образования сосудов за счёт капилляров периоста и эндоста, гаверсовых каналов, костного мозга и формирования грануляционной ткани. Вновь образованные сосуды как бы прошивают образовавшуюся первичную костную мозоль. Постепенно происходит процесс образования остеоидной ткани. Первоначально костный дефект заполняется фибробластами, сосудами (гранулирующая ткань), остеобластами; за счёт развития последних образуется остеоидная ткань, составляющая мягкую (первичную) костную мозоль, формирование которой продолжается 5 нед, этим заканчивается II стадия сращения переломов, начавшаяся с 10-14-го дня.

Регенерат, образующийся между отломками в зоне перелома и вокруг них, принято называть костной мозолью. Она состоит из нескольких слоёв. В зависимости от источника формирования ткани различают следующие слои:периостальный, эндостальный, интермедиальный, или про- межуточный, развившийся из элементов гаверсовых каналов и занимающий пространство между пери- и эндостальными слоями. Четвёртый слой —параоссальный, охватывающий снаружи все слои мозоли, развивается из окружающих мягких тканей. Указанные слои представляют собой единую костную мозоль, в основе которой лежит остеоидная ткань. Наибольшее значение в процессе сращения переломов принадлежит надкостнице, из которой формируется периостальная мозоль.

Дальнейшая перестройка мозоли — переход процесса регенерации в III стадию (обызвествление остеоидной ткани), продолжается до 3-4 мес. К началу этого периода происходит обратное развитие сосудов, полностью исчезает отёк, нормализуется кровоток, все проявления воспаления исчезают.

Развитие костной ткани и сращение отломков далее могут идти по типу заживления костной раны первичным или вторичным натяжением. Если костные отломки плотно сопоставлены и фиксированы при размерах щели между отломками от 50 до 500 мкм, образованная между отломками остеоидная ткань сразу подвергается обызвествлению — это заживление наиболее благоприятное и заканчивается в более короткие сроки. При нём происходит сращение отломков (за счёт эндостального и интермедиального слоёв костной мозоли) с образованием тонкой линейной полосы сращения. Этот вид заживления происходит по типу первичного натяжения.

При идеальном сопоставлении и плотном соприкосновении костных отломков (как это бывает, например, при вколоченных переломах) скелетогенные клетки периоста и эндоста образуют костные балочки, т.е. идёт сразу процесс костеобразования — первично, минуя фиброзно-хрящевую фазу образования кости. В таких случаях костная мозоль бывает малых размеров или вообще не выражена.

Другой вариант сращения переломов — заживление вторичным натяжением, происходит через образование из остеоидной ткани гиалинового или волокнистого хряща, который постепенно трансформируется в костную ткань. Этот процесс более длительный.

Переход заживления в III стадию сопровождается образованием вторичной костной мозоли с отложением в остеоидной ткани извести, т.е. продолжается процесс костеобразования параллельно архитектурной перестройке новообразованной кости. Процесс рассасывания костных отломков, избыточной остеоидной ткани с помощью остеокластов происходит постоянно. В ходе перестройки костной мозоли она замещается трабекулами, восстанавливается костномозговой канал. Завершение консолидации перелома через образование костной мозоли характерно для трубчатых костей. При переломе плоской кости (черепа, таза, грудины, лопатки) такая костная мозоль не образуется. Отломки срастаются за счёт образования соединительной ткани. Указанные различия объясняются особенностями эмбриогенеза трубчатых и плоских костей.

Ссылка на основную публикацию
Adblock
detector